

du mercredi 12 au vendredi 14 juin 2024

La cryptosporidiose, une parasitose pas si cachée

D. Costa

Université de Rouen, EA7510 ESCAPE, CHU de Rouen, CNR cryptosporidioses, microsporidies et autres protozooses digestives. damien.costa@chu-rouen.fr

DEAUVILLE et la région Normandie

DE LANGUE PARTICIPATION OF THE PARTICIPATION OF THE

du mercredi 12 au vendredi 14 juin 2024

Déclaration de liens d'intérêt avec les industriels de santé	
en rapport avec le thème de la présentation (loi du 04/03/2002)):

L'orateur ne souhaite pas répondre

- Intervenant : Nom/Prénom
- Titre : Intitulé de l'intervention
- Consultant ou membre d'un conseil scientifique

- 🗌 OUI 🥪 NOI
- Conférencier ou auteur/rédacteur rémunéré d'articles ou documents
- OUI WNOI

 Prise en charge de frais de voyage, d'hébergement ou d'inscription à des congrès ou autres manifestations (pfizer, gilead)

YOUI NO

Investigateur principal d'une recherche ou d'une étude clinique

Epidémiologie humaine de la cryptosporidiose

- ☐ Prévalence globale à 7,6%
 - □(4,3 % pays développés et 10,4% pays en développement)
- □ 2^{ème} cause de diarrhée modérée à sévère chez enfants < 2 ans en Afrique
- □≈ 48 000 décès par an chez enfants < 2 ans
- □ 47 espèces décrites et > 120 génotypes

Modes de contamination

- Transmission
 - ☐ Directe (humains ou animaux)
 - ☐ Indirecte (eau, aliments contaminés)

- Dose infectante faible
 - □ 10-2000 oocystes *C. parvum*
 - ☐ 10-100 oocystes *C. hominis*

Key Figure

Main Zoonotic Sources and Transmission Pathways of Cryptosporidium Parasites

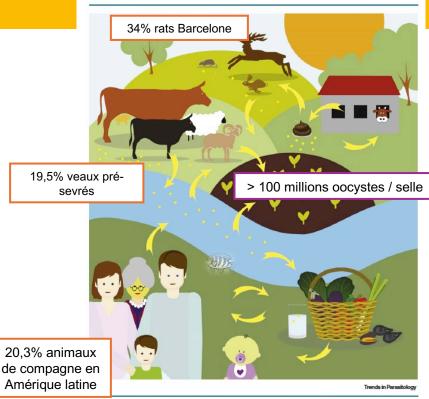
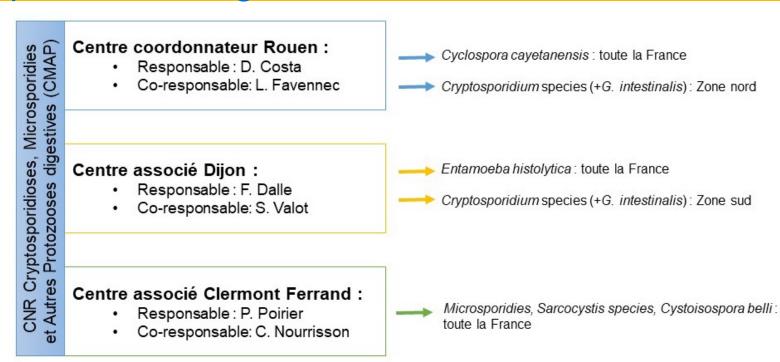



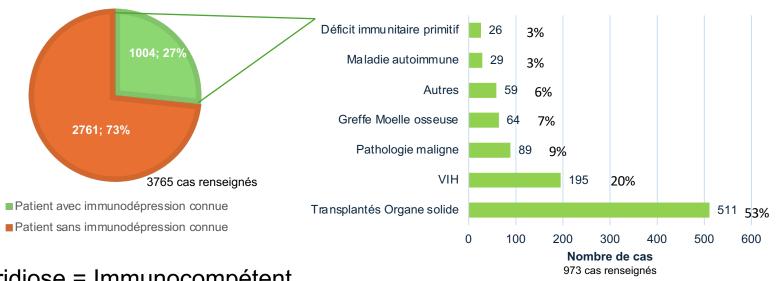
Figure 1. Zoonotic Cryptosporidium parasites are transmitted from livestock and wildlife through long-lived occysts in their faeces, which can contaminate the environment, water, and food, producing a source of infection to people.

Innes et al. 2020

En France

CNR Cryptosporidioses, microsporidies et autres protozooses digestives

RCP hebdomadaire:


G. Gargala
C. Melenotte

CNR
Cryptospondioses, Microsporidies
Autres Protozooses digestives

Distribution des cas (âge/sexe)

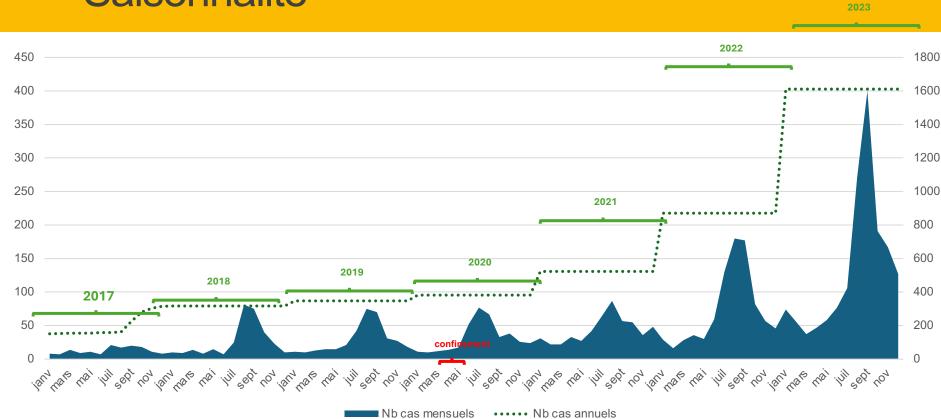
Statuts immunitaires

- <u>Cryptosporidiose</u> = Immunocompétent et immunodéprimé (ID)
- 8 % de décès chez ID

Saisonnalité

2017

29 (3 privés)


Nb de site déclarants

2018

38 (5 privés)

2019

41(9 privés)

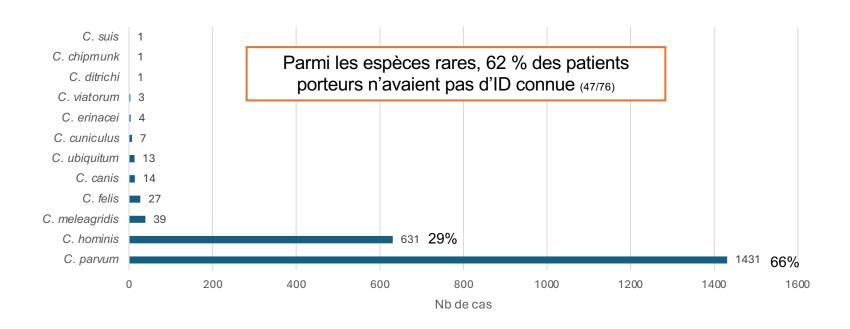
2020

43 (6 privés)

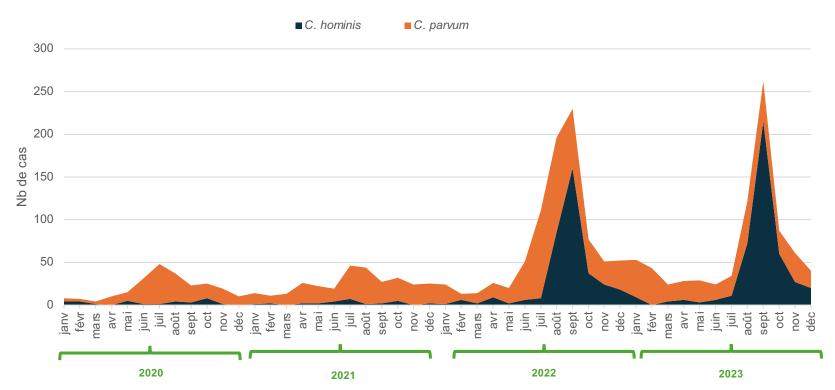
2021

40 (9 privés)

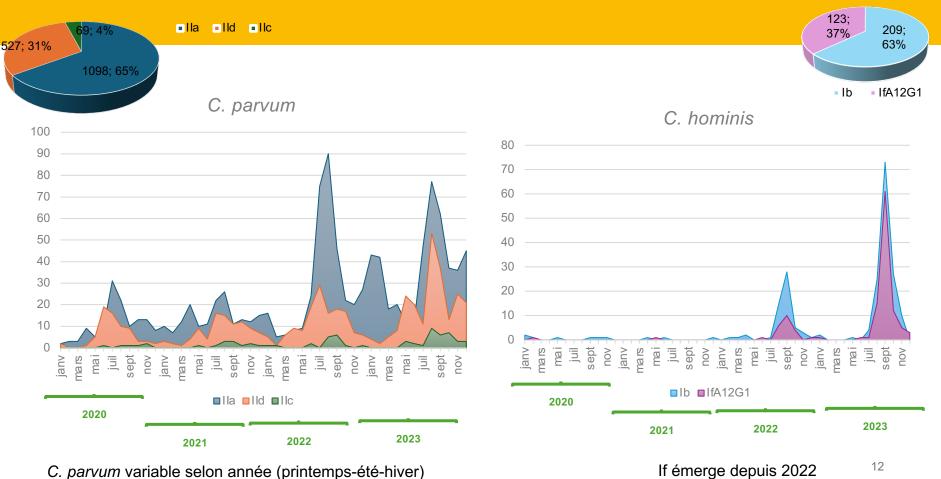
2022


50 (12 privés)

9


2023

55 (17 privés)


Distribution par espèces

Saisonnalité / espèces

Distribution des sous-familles

Epidémiologie environnementale

- ☐ En 60 ans ≈ 950 épidémies d'origine hydrique à protozoaires
 - □≈ 58% à Cryptosporidium spp.
 - ☐ Survie dans eau : 1 an (Tamburini et al, 2019)
 - ☐ Pas de corrélation avec flore bactérienne, ni avec MES ou turbidité
- □> 8 millions de cas d'origine alimentaire / an
- □ Épidémies rapportées avec de nombreux aliments : lait, fromages, cidre, salades et autres crudités...
- Outils pour investiguer les épidémies : Sanger, NGS, MLVA

Épidémies françaises

overseas departments, 2017-2020

Contents lists available at ScienceDirect

Food and Waterborne Parasitology

journal homepage: www.elsevier.com/locate/fawpar

A summary of cryptosporidiosis outbreaks reported in France and

Depuis 2017 : ≥ 3 épidémies / an

Table 1

Main data of outbreaks in France and overseas departments from 2017 to 2020.

Detection	Region	Number of cases	Setting	Origin	Species	Gp60 subtype	Additional sampling	Evidence ^b
June 2017	Occitanie	100 (estimated) 87 (symptomatic) 13 (laboratory confirmed)	Military community	Tap water	C. hominis	IbA10G2	Water (positive to <i>C. hominis</i> IbA10G2)	D + G + E
November 2017	Pays de la Loire	180 (symptomatic) 12 (laboratory confirmed)	Community (high school)	Curd cheese	C. parvum	IIaA15G2R1	Water (negative) Calves (positive to <i>C. parvum</i> IIaA15G2R1)	D + G + E
March 2018	French Guiana	51 (estimated) 16 (laboratory confirmed)	Civilian and military populations	Tap water	C. hominis	IbA10G2	Water positive to C. parvum IIdA19G2.	D + G + E
August 2018	Grand Est	21 (laboratory confirmed)	Global population	Undefined	C. hominis	IaA22R2	NA	G
September 2019	Nouvelle Aquitaine	4 (laboratory confirmed)	Vacationers	Recreational water (lake)	Undefined		Sediment positive to Cryptosporidium sp.	G + E
April 2019	Hauts-de-France	267 (symptomatic) 1 (laboratory confirmed)	Global population	Tap water ^a	Undefined		No	D + G
September 2019	Auvergne-Rhône-Alpes	160 (symptomatic) 9 (laboratory confirmed)	Global population	Tap water ^a	Undefined		Water (positive to Cryptosporidium sp.)	D + G + E
October 2019	Normandie	12 (laboratory confirmed)	Professional exposure	Direct contamination	C. parvum	IIaA15G2R1	Calves (positive to <i>C. parvum</i> IIaA15G2R1)	G+ E
November 2019–2020	Provence-Alpes-Côte d'Azur	Several thousands (estimated) 137 (laboratory confirmed)	Global population	Tap water	C. parvum	IIdA22G1	Water (positive to C. parvum)	D + G + E
2020	Nouvelle Aquitaine	16 (laboratory confirmed)	Global population	Undefined	C. parvum	IIdA18G1	No	G
2020	Occitanie	12 (laboratory confirmed)	Global population	Undefined	Not investig	ated	No	G

^a Tap water contamination due to sewage contamination.

 $^{^{\}rm b}$ Evidence for association with purposed origin: G = genotyping / D = descriptive and E = environmental investigations.

Épidémies françaises

overseas departments, 2017-2020

Contents lists available at ScienceDirect

Food and Waterborne Parasitology

journal homepage: www.elsevier.com/locate/fawpar

A summary of cryptosporidiosis outbreaks reported in France and

Depuis 2017 : ≥ 3 épidémies / an

Table 1
Main data of outbreaks in France and overseas departments from 2017 to 2020.

Detection	Region	Number of cases	Setting	Origin	Species	Gp60 subtype	Additional sampling	Evidence ^b
June 2017	Occitanie	100 (estimated) 87 (symptomatic)	Military community	Tap water	C. hominis	IbA10G2	Water (positive to <i>C. hominis</i> IbA10G2)	D + G + E
November 2017	Pays de la Loire	13 (laboratory confirmed) 180 (symptomatic) 12 (laboratory confirmed)	Community (high school)	Curd cheese	C. parvum	IIaA15G2R1	Water (negative) Calves (positive to <i>C. parvum</i> IIaA15G2R1)	D + G + E
March 2018	French Guiana	51 (estimated) 16 (laboratory confirmed)	Civilian and military populations	Tap water	C. hominis	IbA10G2	Water positive to C. parvum IIdA19G2.	D + G + E
August 2018	Grand Est	21 (laboratory confirmed)	Global population	Undefined	C. hominis	IaA22R2	NA	G
September 2019	Nouvelle Aquitaine	4 (laboratory confirmed)	Vacationers	Recreational water	Undefined		Sediment positive to Cryptosporidium sp.	G + E
April 2019	Hauts-de-France	267 (symptomatic) 1 (laboratory confirmed)	Global population	Tap water ^a	Undefined		No	D + G
September 2019	Auvergne-Rhône-Alpes	160 (symptomatic) 9 (laboratory confirmed)	Global population	Tap water ^a	Undefined		Water (positive to Cryptosporidium sp.)	D + G + E
October 2019	Normandie	12 (laboratory confirmed)	Professional exposure	Direct contamination	C. parvum	IIaA15G2R1	Calves (positive to <i>C. parvum</i> IIaA15G2R1)	G+ E
November 2019–2020	Provence-Alpes-Côte d'Azur	Several thousands (estimated) 137 (laboratory confirmed)	Global population	Tap water	C. parvum	IIdA22G1	Water (positive to C. parvum)	D + G + E
2020	Nouvelle Aquitaine	16 (laboratory confirmed)	Global population	Undefined	C. parvum	IIdA18G1	No	G
2020	Occitanie	12 (laboratory confirmed)	Global population	Undefined	Not investiga	ated	No	G

^a Tap water contamination due to sewage contamination.

^b Evidence for association with purposed origin: G = genotyping / D = descriptive and E = environmental investigations.

Épidémies d'origine hydrique en France

- 6/8 des origines identifiées
 - 5/6 eau de boisson
 - 2/3 C. hominis
 - 1/6 eau récréative
- Focus sur les plus marquantes
 - Occitanie
 - Tolérance immunitaire
 - Excrétion parasitaire
 - Région PACA

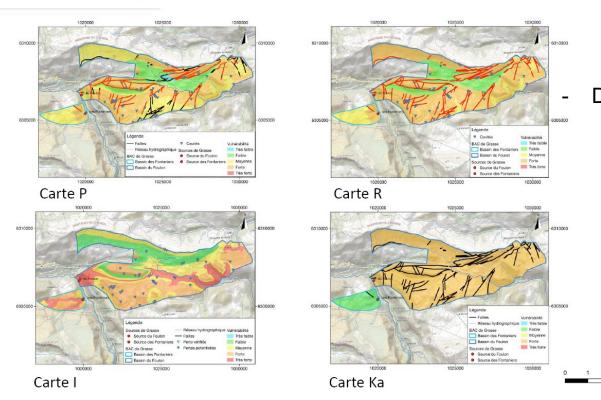
Investigations parasitaires épidémie PACA

160 cas détectés entre Novembre et Décembre 2019

- > 58 % de femmes
- Âge médian : 24 ans [1 à 96 ans] 58 % entre 16 et 40 ans
- Signes principalement diarrhée (99 %) et douleurs abdominales (90 %)
- Durée médiane symptômes : 11 jours [qq heures à 49 jours]

Investigations sanitaires de 2019 PACA

- Etude rétrospective en population
- Etude confiée à Ipsos
- Enquête téléphonique auprès de 694 personnes résidant dans la zone d'étude
 - prévalence de 21,5 % plus importante chez 6-15 ans (34 %)
 plus basse chez 65 ans et plus (11,5 %)
 - > RR=3 liée à consommation eau
 - Nombre de cas attribuables à l'eau dans population de 92 667 personnes = 13 369
 - Majorité de patients n'a pas consulté de médecins (64 %)
 - Très peu de prescription de coprocultures (7%) et pas toujours avec recherche de Cryptosporidium

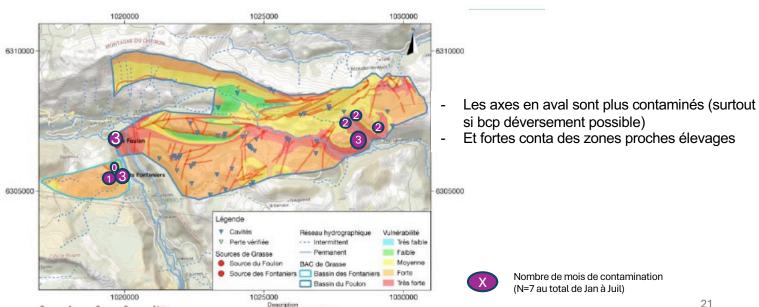

Investigations environnementales

- Suivi qualité eau par ARS et exploitant
- Première détection *cryptosporidium* le 27 novembre (bouche incendie)
- Au total 18 échantillons positifs à Cryptosporidium (300 prélèvements).
 Dernière détection : 23 mars
- Présence de troupeaux de caprins et ovins en pâturage au niveau zone de captage

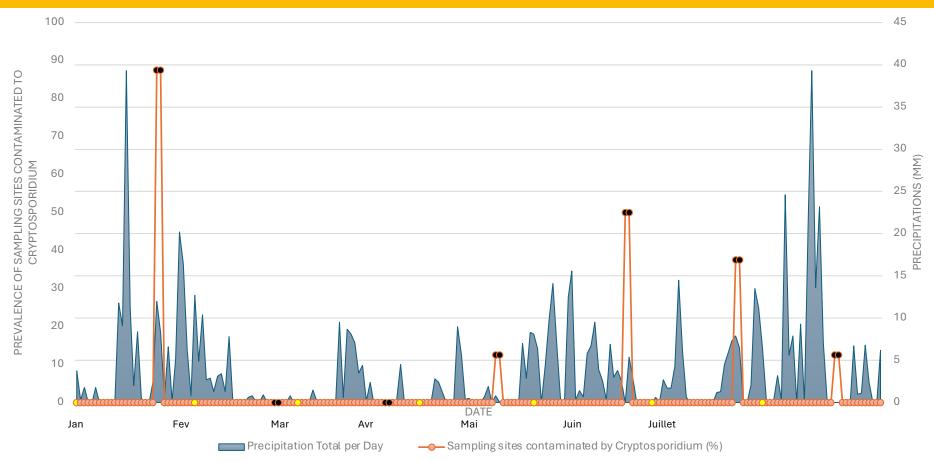
PaPRIKA: Protection des aquifères karstiques

Collaboration M. Fournier université de Rouen

Annexes - Méthode PaPRIKa



- Protection
- Réservoir
- Infiltration


Degré de Karstification

Modélisation in situ

Annexe - Cartes finales de vulnérabilité

Auteur : Gladys FOISSEY

Contamination of sampling sites by *Cryptosporidium* spp. according to precipitations. Black circles: sampling days. Yellow circles: 1st day of each month during the sampling period (January to july).

Messages clés sur la cryptosporidiose

- Touche immunocompétents et immunodéprimés
- Jeunes enfants ++ et jeunes adultes
- * 8% létalité chez les immunodéprimés
- Pic saisonnier
- Nombreuses épidémies (sous estimées)
 - Origine hydrique et alimentaire
 - Epidémies pouvant être massives
- Influence du climat, du sol et des zones d'élevage
- Recrudescence avec réchauffement climatique et réutilisation des ressources ?

du mercredi 12 au vendredi 14 juin 2024

Pensez-y!

Merci de votre attention

